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CHAPTER 4 
OPTICAL ABERRATIONS 

 
 
4.1 Introduction 
 
We have hitherto made the assumption that a lens or a curved mirror is able to form a 
point image of a point object.  This may be approximately true if the depth of the mirror 
or the thickness of the lens is small compared with other distances, and if the angle that 
all rays make with axis of the mirror or lens is small, and if we are using monochromatic 
light.  Usually none of these conditions is satisfied exactly, and consequently the image 
formed by a lens or curved mirror suffers from several aberrations. 
 
There are five geometrical aberrations, given the names 
 
Spherical aberration 
Astigmatism 
Coma 
Curvature of field 
Distortion (pincushion or barrel distortion). 
 
In addition, unless we are using monochromatic light, lenses (but not mirrors) exhibit 
 
Chromatic aberration (longitudinal and transverse). 
 
It may be possible to minimize some of these aberrations by careful choice of the radii of 
curvature of a lens system (“bending the lens”), although the condition for minimizing 
one aberration may be different from minimizing another.  Consequently some sort of 
compromise must be reached, which may depend on which aberrations are important, and 
which are not so important, for a particular application. 
 
It is possible (but don’t hold your breath) that I may get around one day to discussing 
each of these aberrations in turn.  I start with 
 
 
4.2 Spherical Aberration 

 
We’ll begin by looking at the spherical aberration resulting from reflection from a 
spherical mirror.  We have hitherto assumed that a parallel beam of light, after reflection 
from a spherical mirror, comes to a focus at a point, and that the distance of the focal 
point from the surface of the mirror is half the radius of curvature of the mirror, as in 
figure IV.1: 
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This is approximately true for a small aperture mirror (“aperture” meaning the ratio of the 
diameter to the focal length).   This is not the case, however, for a large aperture mirror.  
In figure IV.2 I have drawn a hemispherical mirror.  I assume that there is an incident 
beam of light (not drawn) coming in horizontally from the left, and I have drawn the rays 
after reflection from the mirror.  (Some of the rays will be reflected a second time from 
the surface before eventually escaping, but I have not drawn the rays after a second 
reflection because they would only clutter up the diagram and are not pertinent in 
describing what I want to describe.   You can see that the reflected rays are bounded by 
an envelope known as a caustic curve, shown as a dashed red curve in figure IV.2. 
 

 
 
 

FIGURE IV.1 

FIGURE IV.2 
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Can we find the equation to this caustic curve? 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
We’ll take the centre of curvature of the mirror as origin O of coordinates, and suppose 
that the radius of curvature of the mirror is a.  Let us consider the adventures of a ray of 
light coming in parallel to the horizontal (x) axis and at a height h from it.  The equation 
to the incoming light ray is just hy = , and the equation to the mirror surface is 

222 ayx =+ .  A little bit of coordinate geometry will enable us to determine that the 
equation to the reflected ray is 
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and that it crosses the x-axis at a point C such that 
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It is also convenient to write these formulas in terms of the angle θ, which is given by 

.sin θ= ah   After a little algebra and application of some trigonometric identities, we 
obtain 

θ
θ

−θ=
2cos

sin2tanxy     4.2.3 

 
for the equation to the reflected ray, and 
 

.secOC 2
1 θ= a      4.2.4 

 
We can write equation 4.2.3 as 
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−θ=θ yxyxf    4.2.5 

 
From our long-forgotten, yellowed and mildewy mathematics notes, we recall that to find 
the equation to the envelope of a family of curves of the form 0);,( =θyxf ,  we have 

to eliminate the parameter θ from that equation and the equation .0=
θ∂

∂f    After some 

more algebra and more application of trigonometric identities, we find that the latter 
equation comes to 
 

)cos.(cos 2
2
3 θ−θ=x .    4.2.6 

 
So, all we have to do is to eliminate the parameter θ from equations 4.2.3 and 4.2.6, and 
this would give us the x ,  y equation to the caustic curve.  These two equations are, in 
fact, the parametric equations to the caustic curve.  Now I don’t know how easy it would 
be to eliminate θ.   Since equation 4.2.6 is a cubic equation in cos θ I suspect that it might 
not be particularly easy.  But (as is often the case with two parametric equations to a 
curve) we can happily plot the curve numerically, without having to eliminate the 
parameter algebraically.  Thus, in order to plot the red curve in figure IV.2, I varied θ 
from −90º to +90º, and calculated x from equation 4.2.6, and I then calculated y from 
equation 4.2.3. 
 
   To avoid spherical aberration, telescope mirrors can be made in a paraboloidal shape.  
It can be shown that an incident beam of light, coming in parallel to the axis of a 
paraboloidal mirror, after reflection will come to single focal point, namely at the focus 
of the parabola.  A proof of this is given in Section 2.4 of Chapter 2 of my Celestial 
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Mechanics notes   http://orca.phys.uvic.ca/~tatum/celmechs/celm2.pdf   and is not 
repeated there.  In that Chapter, it is also shown that, if a bucket of liquid is rotated about 
a vertical axis, the surface of the liquid will take up a paraboloidal shape, and mention is 
made there of two applications to the manufacture of paraboloidal mirrors.  In one, a vat 
of molten glass is rotated, and is gradually cooled down until the glass solidifies into a 
paraboloidal shape.  In the other, a container of mercury is rotated, the surface of the 
mercury taking up a paraboloidal shape, and this liquid paraboloid is then used as the 
main mirror of a reflecting telescope.   While it can observe only close to the zenith, 
some excellent results have been obtained.  I shan’t repeat it here, but you might want to 
refer to the above-mentioned notes, since it is pertinent here. 
 
   This property (of light being reflected from the surface of a parabola to a single focal 
point) applies only to light coming in parallel to the axis of the paraboloid.  Consequently 
paraboloidal telescope mirrors have only a rather narrow field of view.  A Schmidt 
telescope uses a spherical mirror (hence a large field of view) and, to avoid spherical 
aberration, a corrector plate is mounted in front of the mirror.  Typically the spherical 
mirror is at the “bottom end” of the telescope tube, and the corrector plate is at the “top 
end”. The corrector plate causes light that is coming in parallel to the telescope tube, but 
some distance from the axis of the tube, to diverge slightly from the axis before reaching 
the spherical mirror.  In this manner all of the incoming light, after reflection from the 
mirror, comes to a focus at a single point.    
 
   A lens also suffers from spherical aberration, of course, but it does not lend itself to 
such simple analysis as for a spherical mirror.  One needs to perform detailed numerical 
ray-tracing to find the exact shape of the caustic curve for a lens.   We showed, however, 
in Section 1.4 of Chapter 1, that refraction even at a plane surface produces spherical 
aberration. 
 
   One might wonder, given that a paraboloidal mirror when used on axis is free of 
spherical aberration, whether a lens made with paraboloidal surfaces, is also free of 
spherical aberration.  Alas, that is not so. 
 
   One can, however, design a lens with spherical surfaces that minimize the spherical 
aberration, by suitable choice of the radii or curvature of the lens surfaces.  This is called 
“bending the lens”. 
 
For example, figure IV.4  shows five lenses, in which I have written, beside each surface, 
its radius of curvature in cm.   In what follows I assume that the lens is “thin” in the sense 
that its thickness is very small compared with any other distances under discussion. If the 
refractive index is 1.6, each of these lenses has a focal length of 20 cm. 
 
You can characterize the shape of a lens by means of its shape factor 
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In figure IV.4 I have written the shape factor above each lens.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    
 
 
 
   For  light coming in horizontally near the axis, the focal length of each of these lenses 
is 20 cm.  However, light coming in horizontally at some distance from the axis, after 
passage through the lens, falls a little short of 20 cm.  We may characterize the spherical 
aberration by the amount it falls short.  Assuming that the lenses are thin (compared with 
any other distances under consideration) I calculated the shortfall for a ray of light 
coming in from the left at a height of 1 cm from the axis.  This is shown in figure IV.5, in 
which I have drawn the shortfall (labelled “Aberration” in the figure) versus shape factor 
q.  It is seen that the aberration is least for a shape factor of about q = −0.38.   The radii of 
curvatures of the lens must satisfy equation 4.2.7 as well as 
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so that, for f   =  20 cm and q =  −0.38, the radii of curvature for least spherical aberration 
should be r1 = 17.4 cm and r2 = −38.7 cm. 
 
  Of course, you have to use the lens the right way round!   If you turn it round, or if light 
is coming in from the right, the shape factor is +0.38, and the spherical aberration is not 
at a minimum.  Mind you, the minimum is fairly shallow, so you can vary the shape 
factor a fair amount without grossly increasing the spherical aberration. 
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FIGURE IV.5

 
 
 
 
 
 
 
I may deal with the other aberrations at some time in the indefinite future.  Maybe. 


