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Derivatives of trigonometric functions

(1) Differentiate f(z) = sinx:
e Start with the definition of f/(x):

;v sin(z+h)—sinz
fiz) = Jim h

e Use sin(x + h) = sinx cosh + cosx sin h:
f(z) = }lir% sinz(cos h — 2) + cosxsinh

e Collect terms and apply limit laws:

, L . cosh—1 . sinh
f(x) = smx}lllir(l] — +COS$;1L1L%
h—1 inh
e Use }Lirr(l] % =0 and }Lir% % =1 to conclude f'(x) = cosz.
2) A very similar derivation gives — cosx = —sin x.
d
x
(3) We still need itanx _d (sinz
dx dz \ cosx
4 (sin x) cos x — sin 2-%(cos x)
otient rule) = 4 da
(quotient rule) g

cos T cos T — sin z(— sin z)

cos? x
cos? x + sin’ z 1

cos? x cos? x

Summary: Derivatives of trigonometric functions

—sinx = cosx
dx
d .
—cosx = —sinzx
dx
1 2
—tanx = 5 = sect
dx cos? x
1
—secxr = =secxrtanx
dx CcOoS X

dx

d B 1 )
dr cscxr = dr . = CsCx cotx

a4
dx
d d fcosx 9
—cotx = %< )——cscx
d




Derivative of composites

example: relating derivatives

Y= %ZB is the same as y = %u and u = 3x. By differentiating

dy 3 dy 1 du

de 27 du 2 dx
we find that

I _dydu
dv  dudz’

Coincidence or general formula: Do rates of change multiply?

The chain rule:

Composite f- g

Rate of change at
xis fgx)) - g'lx.

8

Rate of change f,«f’"'x Rate of change
atxis glx). ——— algl)isflglx). ———
X u = glx) y = flu) = flg(x))

THEOREM 3 The Chain Rule

If f{u) is differentiable at the point ¥ = g(x) and g(x) is differentiable at x, then
the composite function (f < g)(x) = f(g(x)) is differentiable at x, and

(f ¢ gY(x) = f'(gx))g'(x).
In Leibniz’s notation, if y = f(u) and # = g(x), then
& _ & du
dy  du dx’

where dy/du is evaluated at u = g(x).

examples:

(1) Differentiate x(t) = cos(t + 1).
Here: Choose z = cosu and u =t + 1 and differentiate,

dx . du
@——smu and E_l’
Then
dx

E:(—sinu)~1:—sin(t+1).

%sz’n(yc2 + ) = cos(z? + z)(2z + 1)



Parametric equations

example:

Position of particle
at time ¢ TR (A1), gln)

Describe a point moving in the zy-plane as a function of a parameter t (“time”) by two
functions

This may be the graph of a function, but it need not be.

DEFINITION  Parametric Curve
If x and y are given as functions

x=f(r), y=g)
over an interval of f-values, then the set of points (x, y) = (f(¢), g(#)) defined by
these equations is a parametrie curve. The equations are parametric equations
for the curve.

The variable ¢ is a parameter for the curve. If ¢t € [a,b], which is called a parameter
interval, then (f(a),g(a)) is the initial point, and (f(b), g(b)) is the terminal point.
Equations and interval constitute a parametrisation of the curve.

examples:

(1) Given is the parametrisation = = Vt, y=t, t>0. What is the path defined by these
equations?

Solve for y = f(z): y=t, 2> =t = y = 2. Note that the domain of f is only [0, c0)!



0| Starts at
r=10

(2) Find a parametrisation for the line segment from (—2,1) to (3,5).

e Start at (—2,1) for £t = 0 by making the ansatz (“educated guess”)

r=—-24at, y=1+0bt.
e Implement the terminal point at (3,5) for ¢t = 1:

3=-2+4a, b5=1+0b.
e We conclude that a =5, b= 4.

e Therefore, the solution based on our ansatz is:

|o0=—245t, y=1+4t,0<t<1

)

which indeed defines a straight line (why?).

A parametrised curve z = f(t), y = g(¢) is differentiable at ¢ if f and g are differentiable
at t. At a point where y is a differentiable function of x, say y = y(z), it is y = y(z(t)) and
by the chain rule

dy _dyds
dt — drdt’
Solving for dy/dz yields the

Parametric Formula for dy /dx

If all three derivatives exist and dx/dt # 0,
dy B dv/dt
de — dx/dt’




example: Describe the motion of a particle whose position P(z,y) at time ¢ is given by

‘x:acost, y =bsint , 0§t§27r‘

and compute the slope at P.

e Find the equation in (x,y) by eliminating t:

Using cost = z/a, sint = y/b and cos?t + sin®t = 1 we obtain

Y
2tr=h
which is the equation of an ellipse.
e With Cfl—f = —asint and % = bcost the parametric formula yields

dy _dy/dt _ bcost
dr  dx/dt  —asint’

d b?
Eliminating ¢ again we obtain v
dx a?y

Implicit differentiation

problem: We want to compute ¢’ but do not have an explicit relation y = f(z) available.
Rather, we have an implicit relation

F(z,y)=0

between x and y.

example:
F(r,y)=2>+y*—1=0.

solutions:
1. Use parametrisation, for example, x = cost, y = sint for the unit circle.
2. If no obvious parametrisation of F(z,y) = 0 is possible: use implicit differentiation.

example: Given y? = x, compute /.

New method by differentiating implicitly:

e Differentiating both sides of the equation gives 2yy’ = 1.

e Solving for ¢y we get |y = = |

Compare with differentiating explicitly:

e For y? = x we have the two explicit solutions |y| = \/T = y;2 = £+/z with derivatives

91,2 = iﬁ .




e Compare with solution above: substituting y = y12 = £+/x therein reproduces the
explicit result.

Implicit Differentiation

1. Differentiate both sides of the equation with respect to x, treating y as a differ-
entiable function of x.

2. Collect the terms with dy/dx on one side of the equation.
3. Solve for dy/dx.

2 2
example: Find dy/dx for the ellipse, x_2 + 22—2 =1
a
2¢  2yy
2yy’ 2
2R T e
2
3.9y = —— —, as obtained via parametrisation in the previous lecture.
ay

application: Motivate the power rule for rational powers by differentiating y = za using
implicit differentiation:

e write Yl = P

o differentiate: quily' = paP™!

e solve for ¢’ as a function of x:
,_pa?™t _paly  py pxi _p v,y
q

gyl gyl qu

Y



THEOREM 4 Power Rule for Rational Powers

If p/q is a rational number, then x”/7 is differentiable at every interior point of the
domain of x”/9~! and

d F.l‘llq = gx!pfq}_l‘

ax

note: Above we have silently assumed that iy’ exists! Therefore we have ‘motivated’ but
not (yet) proved this theorem!

Linearisation

x y = fix)

-
-

Slope = f (a)

(a, fla))

“Close to” the point (a, f(a)), the tangent L(z) = f(a) + f'(a)(z — a) (point-slope form) is
a “good” approximation for y = f(x).

DEFINITIONS Linearization, Standard Linear Approximation
If f is differentiable at x = 4, then the approximating function

L(x) = f(a) + f'(a)(x — a)
is the linearization of f at a. The approximation
flx) = L(x)

of f by L is the standard linear approximation of f at . The point x = a is the
center of the approximation.

example: Compute the linearisation for f(z) = /1 +z at z = a = 0.
We have f(0) =1 and with f'(z) = 3(1 4 z)™"/2 we get f'(0) = 1, so

1
L(x):1+§a:.



uf}&l {}l,l 02
Approximation True value | True value — approximation |
Viz=1+ % = 1.10 1.095445 <107
V05 = 1+ 22 = 1005 1.024695 <107
V1.005 ~ 1 + ”‘2“5 =1.00250  1.002497 <107

Why are linearisations useful? Simplify problems, solve equations analytically, ... many

applications!

Make phrases like “close to a point (a, f(a)) the linearisation is a good approximation”
mathematically precise in terms of differentials:

Choose x = a + dz, a = x:

fla)+ f'(a)(x = a)
f'(a) (x —a)
——

dx
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DEFINITION Differential
Let v = f(x) be a differentiable function. The differential dx is an independent

variable. The differential dy is
dy = f'(x) dx.

Reading Assignment: please read
Thomas’ Calculus, p. 167-168 about Differentials

Extreme values of functions

DEFINITIONS  Absolute Maximum, Absolute Minimum
Let f be a function with domain D. Then f has an absolute maximum value on
D at a point ¢ if

flx) = fe) forall x in D

and an absolute minimum value on D at ¢ if

fx) = fleo) forall xin D.

These values are also called absolute extrema, or global extrema.

example:
X
el
vy
D =10,2]
X é X
(a) (h}
¥ ¥
B 3
¥y =X ¥ =x"
D= 0,2 D=2
1 x 1 X
| 2 | 2

(&) . ) {d)
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‘ H Domain ‘ abs. max. ‘ abs. min. ‘

(a) || (—o0,00) none 0,at 0
O 0.2 Lat2 | 0,at0
(c) (0, 2] 4, at 2 none
(d) (0,2) none none

The existence of a global maximum and minimum is ensured by

THEOREM 1

If f is continuous on a closed interval [a, &), then f attains both an absolute max-
imum value M and an absclute minimum value m in [a, b]. That is, there are
numbers x| and x; in [a, £] with f(x;) = m, f(x;) = M,andm = f(x) = M for

The Extreme Value Theorem

every other x in [a, b] (Figure 4.3).

examples:

xl/l
b

||
|

(xy, m)
Maximum and minimum
at interior points

X

y=flx)
M

[
1
1
1
1
1 | n
a

X

b

Maximum and minimum
at endpoints

Thrm———— =2

X X
Maximum at inlerior point, Minimurmn at interior point,
minimum at endpoint maximum at endpoint
Classify maxima and minima:
Absolute maximum
No greater value of fanywhere.
Local maximum Also a local maximum.
No greater valuc of
[ nearby,

Absolute minimum
Na smaller value of
fanywhere. Alsoa |

.. I
local minimum. |
1

: Local minimum

I No smaller value of
: Jf nearby.
|

Local minimum
No smaller value
I of f nearby.

4 C

¢

|
|
d b
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DEFINITIONS  Local Maximum, Local Minimum
A function f has a local maximum value at an interior point ¢ of its domain if

fx) = f(c) for all x in some open interval containing c.
A function f has a local minimum value at an interior point ¢ of its domain if

fx) = f(c) for all x in some open interval containing c.

...and the extension of this definition to endpoints via half-open intervals at endpoints.

note: Absolute extrema are automatically local extrema!



